
BorrowSanitizer
Finding Ownership Bugs
in Multilanguage Rust Applications

BorrowSanitizer: Finding Ownership Bugs
in Multilanguage Rust Applications

Ian McCormack
Carnegie Mellon University
Software & Societal Systems

BorrowSanitizer
Finding Ownership Bugs in
Multilanguage Rust Applications

Background & Motivation

Design Principles

Future Work

Background 3

Background 4

&T
Shared, Read-only

&mut T
Unique, Write

Safe References

*const/mut T
Shared, Write

Raw Pointers

Rust restricts aliasing
to provide static safety
guarantees…

…but developers need
to bypass these
restrictions.

Background

Calling unsafe functions

Intrinsics & inline assembly

Manipulating uninitialized memory

Accessing global, mutable state

Dereferencing raw pointers

Implementing an unsafe trait

Rust developers need use a set of ”unsafe”
features to interoperate with other languages.

5

Background 6

A

FileSystem
A

Allocation

File
&T &mut T

A Afs_t fs_alloc_t

*mut T

❌

Background

A

FileSystem
A

Allocation

File
&T &mut T

A Afs_t fs_alloc_t

*mut T

7

Background

A

FileSystem
A

Allocation

File
&T &mut T

A Afs_t fs_alloc_t

*mut T

8

❌

Background 9

Aliasing violations are both
a form of undefined behavior
and an indication that other
safety errors might exist.

Background 10

O
R

Bounds Checking Liveness Checking Data Race Detection

(Address, Provenance)
Pointer

(Allocation ID, Tag)
Provenance

Miri, a Rust interpreter, can find these aliasing bugs

Tree Borrows

Neven Villani, Johannes Hostert,
Derek Dreyer, Ralf Jung

PLDI ‘25

Stacked Borrows

Ralf Jung, Hong-Hai Dang,
Jeehon Kang, and Derek Dreyer

POPL ‘20

OR

Background 11

MiMiri cannot find aliasing violations
triggered by foreign code.

Background

A
Are aliasing violations hiding,
undetected, in multilanguage
Rust programs?

12

A

A Study of Undefined Behavior Across Foreign
Function Boundaries in Rust Libraries

Ian McCormack, Jonathan Aldrich, Joshua Sunshine

ICSE ‘25

Background

A

We combined Miri with
LLI, an LLVM interpreter,
to create MiriLLI.

Our tool uses each
interpreter to jointly
execute programs defined
across Rust and LLVM IR.

13

Background 14

There were 9,130 compatible
tests from 957 crates.

61% encountered an
unsupported operation.

We evaluated MiriLLI on every compatible crate.

Compatibility

Performance
Anecdotally, Miri is several orders of magnitude slower than native execution

Miri is not enough for large-scale, multi-language applications.

Background 15

What should a new tool look like?

AFast Native instrumentation…

A
C/C++

Support …through a common format.

Background

(Address, Provenance)
Pointer

(Allocation ID, Tag)
Provenance

Pointer-Level Metadata

“Identity-Based Access Checking”
SoK: Sanitizing for Security • Song et al., 2019

Tree Borrows

Neven Villani, Johannes Hostert,
Derek Dreyer, Ralf Jung

PLDI ‘25

Stacked Borrows

Ralf Jung, Hong-Hai Dang,
Jeehon Kang, and Derek Dreyer

POPL ‘20

Allocation-Level Metadata

16

Background

Valgrind injects instrumentation into compiled programs.

In 2023, the Krabcake project proposed
extending Valgrind to support detecting
Stacked Borrows violations.
Felix Klock, Bryan Garza • AWS

A
Valgrind’s baseline
overhead is still 4x.

AUsable

✅
AFast

✅
A

C/C++
Support
✅

RW2023!

17

Background

Components written in safe Rust can be
provably free of undefined behavior

Safe

Unsafe

18

Design

A

An LLVM-based dynamic analysis tool.

borrowsanitizer.com

BorrowSanitizer
Finding aliasing bugs at-scale

🐞 Aliasing Violations

🐜 Accesses out-of-bounds

🐛 Use-after-free

19

Our Team

Ian McCormack
Carnegie Mellon University

Oliver Braunsdorf
Ludwig Maximilian University

Jonathan Aldrich
Carnegie Mellon University

Johannes Kinder
Ludwig Maximilian University

Rafayel Amirkhanyan
University of Pittsburgh

Joshua Sunshine
Carnegie Mellon University

Molly MacLaren
Carnegie Mellon University

Krit Dass
Carnegie Mellon University +

Funded by

20

Design

LLVM IR

AST HIR MIR

C/C++
Source

Rust
Source

Rust Compiler

Clang LLVM

AST

Native
Binary

21

Cargo
Plugin

Codegen

Runtime

Backend
Pass

Architecture

Developing for x86 and
ARM Linux toolchains.

Design 22

Inside the Rust Compiler
Frontend

Today, only some retags are explicit MIR statements.

Source

x = &mut y;
Retag(x);

MIR

let x = &mut y;

LLVM IR %x = __retag(%y, ..)

Others are added implicitly when Miri interprets assignments.

Our modified compiler emits all retags as explicit statements.

Design 23

Inside the Rust Compiler
Frontend

MIR Retags are “coarse-grained” and
apply to entire places.

Retag(RetagKind, Box<Place<'tcx>>)

Design 24

Inside the Rust Compiler
Frontend

Option<Either<i8, &mut i8>>

Option::Some(..)

Option::None

Either::Right(..)

Either::Left(..)

ADTs containing references may
need to be conditionally retagged.

MIR Retags are “coarse-grained” and
apply to entire places.

Retag(RetagKind, Box<Place<'tcx>>)

Design 25

Inside the Rust Compiler
Frontend

Option<Either<i8, &mut i8>

Option::Some(..)

Option::None

Either::Right(..)

Either::Left(..)

ADTs containing references may
need to be conditionally retagged.

We create a “retag plan” based on
the structure of each type.

MIR Retags are “coarse-grained” and
apply to entire places.

Retag(RetagKind, Box<Place<'tcx>>)

✅

Design 26

Inside the Rust Compiler
Frontend

ptr __retag_operand(ptr, u64, u64, u8)

Base Address

Acce
ss

Size

Perm
iss

ion Type

Protecte
d?

New Alias

All parameters are standard between aliasing models
except for the “permission type”.

Can be configured by
compiler plugins.

Status
updates:

Design 27

Out-of-Tree LLVM Plugin
Backend Pass

Associates each pointer with “provenance”.

Uses 🧵 Thread-Local Storage and 👻 Shadow Memory for storing
and propagating provenance across the stack and heap.

Borrow Tag Metadata PointerAllocation ID + +

Replaces “retag” intrinsics with calls into the runtime and
instruments all memory access operations.

Design 28

Static Rust Library
Runtime

Allocation ID 🔑
Borrow Tag
Metadata Pointer

usize

usize

Tree

Provenance AllocInfo

…

��

u8

Tree Pointer

Base Address
Allocation Kind

usize

usizeAllocation ID

Design

We will match Miri’s behavior for
uninstrumented function calls.

Overwrite shadow provenance entries in
their underlying allocation with
“wildcard” values.

Instrumented
Library

Uninstrumented
Library

Instrumented
Interceptors

✅ 🤔

Assign “always-valid”
provenance to the
return value.

Clear and expose all
provenance entries
for arguments.

⛓

Expose all provenance entries for
pointer arguments.

✏

✳

29

Maintaining metadata integrity requires
knowing whether the caller is instrumented.

Static Rust Library
Runtime

Future Work

Components written in safe Rust can be
provably free of undefined behavior

Safe

Unsafe

30

Future Work

We only need to instrument allocations that
are “tainted” by both safe and unsafe contexts.

Safe

Unsafe

Lifetime Start Lifetime End

31

Future Work

We only need to instrument allocations that
are “tainted” by both safe and unsafe contexts.

Safe

Unsafe

Lifetime Start Lifetime End

32

Future Work

We only need to instrument allocations that
are “tainted” by both safe and unsafe contexts.

Safe

Unsafe

Lifetime Start Lifetime End

LiteRSan:
Lightweight Memory Safety Via
Rust-specific Program Analysis
and Selective Instrumentation

Xia et al.

33

Future Work 34

Phase 2
December 2025

Multi-threaded Static OptimizationsSingle-threaded

Phase 1
October 2025

Phase 3
September 2026

Pre-RFC

BorrowSanitizer
Finding Ownership Bugs in
Multilanguage Rust Applications

MiProject Site
borrowsanitizer.com

Ian McCormack
Carnegie Mellon University

Oliver Braunsdorf
Ludwig Maximilian University

Jonathan Aldrich
Carnegie Mellon University

Johannes Kinder
Ludwig Maximilian University

Rafayel Amirkhanyan
University of Pittsburgh

Joshua Sunshine
Carnegie Mellon University

Molly MacLaren
Carnegie Mellon University

Krit Dass
Carnegie Mellon University

