BorrowSanitizer

Finding Ownership Bugs in
Multilanguage Rust Applications

lan McCormack

Carnegie Mellon University
Software & Societal Systems

Background & Motivation

Design Principles

Future Work

Memory Safe
Languages

Memory Unsafe

Languages
¢ - >
f "Safer with Google: Advancing Memory Safety"
Alex Rebert » Security Foundations
TOday Chandler Carruth, Jen Engel, Andy Qin * Core Developers

O ® ® Background .
e

Rust restricts aliasing
to provide static safety
guarantees...

...but developers need
to bypass these
restrictions.

O ® ® Background

Safe References

&T &mut T
Shared, Read-only Unique, Write

* Raw Pointers j

xconst/mut T
Shared, Write

Rust developers need use a set of "unsafe”
features to interoperate with other languages.

Calling unsafe functions Dereferencing raw pointers
Intrinsics & inline assembly Implementing an unsafe trait

Manipulating uninitialized memory

Accessing global, mutable state *

O ® ® Background 5

&T &mut T

’/ File \x\‘

FileSystem Allocation

[fs_ t } >[fs _alloc_t]

. o . o

*mut T

O ® ® Background

FileSystem Allocation

fs_ t } >[fs_alloc_t]

O ® ® Background

O ® ® Background

FileSystem

Aliasing violations are both 5T 1 rrie g fmE T
a form of undefined behavior TN

FileSystem Allocation

and an indication that other (et e feottocs
safety errors might exist.

xmut T

O ® ® Background

Miri, a Rust interpreter, can find these aliasing bugs

Stacked Borrows Tree Borrows
Ralf Jung, Hong-Hai Dang, OR Neven Villani, Johannes Hostert,
Jeehon Kang, and Derek Dreyer T p Derek Dreyer, Ra1|fCJ>un—g<>/O<8/O
POPL ‘20 PLDI ‘25
Bounds Checking Liveness Checking Data Race Detection
Pointer Provenance
(Address, Provenance) > (Allocation ID, Tag)
N N N

O ® ® Background 10

Memory Safe
Languages

Miri cannot find aliasing violations
triggered by foreign code.

Memory Unsafe

Languages
° >
f "Safer with Google: Advancing Memory Safety"
Alex Rebert * Security Foundations
TOday Chandler Carruth, Jen Engel, Andy Qin * Core Developers

O ® ® Background 11
e

Are aliasing violations hiding,

undetected, in multilanguage M
Rust programs?

A Study of Undefined Behavior Across Foreign
Function Boundaries in Rust Libraries

lan McCormack, Jonathan Aldrich, Joshua Sunshine

ICSE ‘25

O ® ® Background

12

We combined Miri with
LLI, an LLVM interpreter,
to create MiriLLI.

Our tool uses each
interpreter to jointly
execute programs defined
across Rust and LLVM IR.

O ® ® Background

AN
Rust Rust Compiler Rust
Source MIR
Memory Thread
Miri
Shims Manager

Value Translation Functions
Foreign Function Interface

i

LLI LLVM Thread State
C/C++ Clang LLVM
Source R

13

Miri is not enough for large-scale, multi-language applications.

Compatibility

We evaluated MiriLLI on every compatible crate.

There were 9,130 compatible

' Unsupported [l Passed Failed
tests from 957 crates. N Tinedout [Possible Bug
61% encountered an | B
unsupported operation. 0 50 100

Performance

Anecdotally, Miri is several orders of magnitude slower than native execution

O ® ® Background 14

What should a new tool look like?

Fast Native instrumentation...

C/C++

S ...through a common format.
upport

O ® ® Background 15
e

Pointer-Level Metadata

Pointer Provenance
(Address, Provenance) > (Allocation ID, Tag)
N N N

Allocation-Level Metadata

Tree Borrows Stacked Borrows

Neven Villani, Johannes Hostert, Ralf Jung, Hong-Hai Dang,

Derek Dreyer, Ralf Jung Jeehon Kang, and Derek Dreyer T
PLDI ‘25 POPL ‘20

“ldentity-Based Access Checking”

SoK: Sanitizing for Security * Song et al., 2019
O ® ® Background

16

Valgrind injects instrumentation into compiled programs.

Usable Fast C/C++
Support

v v —

In 2023, the Krabcake project proposed
extending Valgrind to support detecting Valgrind's baseline

Stacked Borrows violations. 212023/ overhead is still 4x.
Felix Klock, Bryan Garza * AWS] , |

O ® ® Background 17

Components written in safe Rust can be
provably free of undefined behavior

O ® ® Background

18

® O ® Design

BorrowSanitizer

Finding aliasing bugs at-scale
borrowsanitizer.com

An LLVM-based dynamic analysis tool.

® Aliasing Violations
%@ Accesses out-of-bounds

Use-after-free

19

Our Team

lan McCormack
/ Carnegie Mellon University

Rafayel Amirkhanyan
) University of Pittsburgh

Krit Dass
Carnegie Mellon University

Jonathan Aldrich

Carnegie Mellon University

Molly MacLaren

Carnegie Mellon University

Oliver Braunsdorf
Ludwig Maximilian University

S} Johannes Kinder

Ludwig Maximilian University

Joshua Sunshine
Carnegie Mellon University

Funded by

N aal

Rust
Foundation

e

-4

-
P

20

Architecture

___________ Rust Compiler L
:' : [/ \|
Rust ., Largo 1y AT — HR - MR
Source | Plugin | |
|] | i :
i Codegen |
Developing for x86 and - J
ARM Linux toolchains. "7 f""°"7
Clan LLVM pmmmm o .
° \ | I
C/C++ : . :
Source —» AST » LLVM IR | Runtime |
|
, Backend _ | Native
; Pass ; Binary
® O ® Design 21

Frontend

Inside the Rust Compiler

Today, only some retags are explicit MIR statements.

Others are added implicitly when Miri interprets assignments.

~
let x = &mut y;
> [LLWMIR | %x = __retag(%y, ..)
MIR X = &mut vy;
Retag(x) ;
_/

Our modified compiler emits all retags as explicit statements.

® O ® Design 22

Frontend

Inside the Rust Compiler

MIR Retags are “coarse-grained” and Retag(RetagKind, Box<Place<'tcx>>)
apply to entire places.

® O ® Design 23

Frontend

Inside the Rust Compiler

MIR Retags are “coarse-grained” and Retag(RetagKind, Box<Place<'tcx>>)
apply to entire places.

ADTs containing references may ® Option<Either<i8, &mut i8>>

need to be conditionally retagged.
—QO Option: :None

—@ Option::Some(..)
—Q Either::Left(..)

—® Either::Right(..)

® O ® Design 24

Frontend

Inside the Rust Compiler

MIR Retags are “coarse-grained” and
apply to entire places.

ADTs containing references may
need to be conditionally retagged.

We create a “retag plan” based on
the structure of each type.

® O ® Design

Retag(RetagKind, Box<Place<'tcx>>)

® Option<Either<i8, &mut 18>

—@ Option::Some(..)

— M Either: :Right(..)

25

Frontend Can be configured by
Inside the Rust Compiler / compiler plugins.

ptr __retag_operand(ptr, u64, u64, u8)

) IR

e 5 e e Q.
W SO
N\ O 52 e
$® 66 ?\(.a(’e \(9(90 Q(O\'
2
QO Qe‘d\
Status
updates:
All parameters are standard between aliasing models
except for the “permission type”.
® O ® Design 26

Backend Pass
Out-of-Tree LLVM Plugin

Associates each pointer with “provenance”.

Allocation ID | + | Borrow Tag | + | Metadata Pointer

Uses B Thread-Local Storage and & Shadow Memory for storing
and propagating provenance across the stack and heap.

Replaces “retag” intrinsics with calls into the runtime and
instruments all memory access operations.

® O ® Design 27
T

Runtime
Static Rust Library

Provenance AllocInfo
Allocation ID Y usize Allocation ID usize
Borrow Tag usize 4|_> Base Address usize
Metadata Pointer — e— Allocation Kind us
Tree Pointer o
Tree

® O ® Design

Runtime

Static Rust Library Clear and expose all
provenance entries

for arguments.

We will match Miri's behavior for

/
uninstrumented function calls. | _____________ l _____________
_ Instrumented ' Uninstrumented |
. Expose all provenance entries for Library | Library |
N) '
" pointer arguments. |
Overwrite shadow provenance entries in T T
% their underlying allocation with O
llWIldca rd" ValueS. Assign ”always_va“d" l
provenance to the Instrumented
. return value.
Maintaining metadata integrity requires Interceptors
knowing whether the caller is instrumented. ‘”f

® O ® Design 29
T

Components written in safe Rust can be
provably free of undefined behavior

® ® O FutureWork

30

We only need to instrument allocations that
are “tainted” by both safe and unsafe contexts.

Lifetime Start Lifetime End
Safe -0 Y
[Unsafe} »0 @
@ ® O FutureWork 31

We only need to instrument allocations that
are “tainted” by both safe and unsafe contexts.

Lifetime Start Lifetime End
Safe —»K]
[Unsafe

@ ® O FutureWork 32

We only need to instrument allocations that

are “tainted” by both safe and unsafe contexts.

Lifetime Start Lifetime End

N/

[Unsafe

00

Future Work

LiteRSan:

Lightweight Memory Safety Via
Rust-specific Program Analysis
and Selective Instrumentation

[] ¥4 [m] Xia et al.

33

Phase 1 Phase 2 Phase 3

October 2025 December 2025 September 2026
Single-threaded ‘ Multi-threaded Static Optimizations
Pre-RFC

® ® O FutureWork 34

BorrowSanitizer

— s Project Site
Finding Ownership Bugs in borrowsanitizer.com

Multilanguage Rust Applications

lan McCormack
Carnegie Mellon University

#!)\ Molly MacLaren Rafayel Amirkhanyan
, Carnegie Mellon University University of Pittsburgh

Krit Dass
' Carnegie Mellon University

 Johannes Kinder
Ludwig Maximilian University

Oliver Braunsdorf
Ludwig Maximilian University

‘5 Jonathan Aldrich "~ Joshua Sunshine - P
[' ' i i i Foundation
Carnegie Mellon University Carnegie Mellon University J o

